Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition
نویسندگان
چکیده
منابع مشابه
Blow-up analysis for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary condition
In this paper, we consider a semilinear parabolic equation ut = ∆u + u q ∫ t 0 u(x, s)ds, x ∈ Ω, t > 0 with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) = ∫ Ω φ(x, y)u (y, t)dy and nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the blow-up rate are obtained.
متن کاملBlow-up for a Semilinear Parabolic Equation with Nonlinear Memory and Nonlocal Nonlinear Boundary
where Ω is a bounded domain in RN for N ≥ 1 with C2 boundary ∂Ω, p, q, l and k are positive parameters, the weight function f (x, y) is nonnegative, nontrivial, continuous and defined for x ∈ ∂Ω, y ∈ Ω, while the nonnegative nontrivial initial Received November 14, 2012, accepted January 28, 2013. Communicated by Eiji Yanagida. 2010 Mathematics Subject Classification: 35B35, 35K50, 35K55.
متن کاملBlow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition
* Correspondence: zhgs917@163. com Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article Abstract This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and globa...
متن کاملBlow up of Solutions with Positive Initial Energy for the Nonlocal Semilinear Heat Equation
In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.
متن کاملThe Blow–up Rate for a Semilinear Parabolic Equation with a Nonlinear Boundary Condition
In this paper we obtain the blow-up rate for positive solutions of ut = uxx−λu, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0. If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by u(1, t) ∼ (T − t) − 1 2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given by u(1, t) ∼ (T − t) − 1 p−1 . We also characterize the blow-up profil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.05.028